Implementation of Discontinuous Galerkin Methods for the Level Set Equation on Unstructured Meshes
نویسندگان
چکیده
PURPOSE: Level set methods are often used to capture interface behavior in two-phase, incompressible flow models. While level set techniques for structured computational grids have been widely investigated, approaches for unstructured meshes are less mature. This report details the formulation and implementation of a discontinuous Galerkin-based approach that is suitable for unstructured meshes and offers potential gains in accuracy and efficiency over more traditional level set techniques.
منابع مشابه
A quadrature-free discontinuous Galerkin method for the level set equation
A quadrature free, Runge–Kutta discontinuous Galerkin method (QF-RK-DGM) is developed to solve the level set equation written in a conservative form on twoand tri-dimensional unstructured grids. We show that the DGM implementation of the level set approach brings a lot of additional benefits as compared to traditional ENO level set realizations. Some examples of computations are provided that d...
متن کاملRunge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes
In this paper we generalize a new type of limiters based on the weighted essentially nonoscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [31] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the en...
متن کاملRunge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter on unstructured meshes
In this paper we generalize a new type of compact Hermite weighted essentially nonoscillatory (HWENO) limiter for the Runge-Kutta discontinuous Galerkin (RKDG) methods, which were recently developed in [34] for structured meshes, to two dimensional unstructured triangular meshes. The main idea of this limiter is to reconstruct the new polynomial using the entire polynomials of the DG solution f...
متن کاملRunge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes
In [20], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes, with the goal of obtaining a r...
متن کاملAn Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems
We present an efficient implicit time stepping method for Discontinuous Galerkin discretizations of the compressible Navier-Stokes equations on unstructured meshes. The Local Discontinuous Galerkin method is used for the discretization of the viscous terms. For unstructured meshes, the Local Discontinuous Galerkin method is known to produce non-compact discretizations. In order to circumvent th...
متن کامل